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Abstract

We propose a learning system in which lan-
guage is grounded in visual percepts without
pre-defined category constraints. We present
a unified generative method to acquire a
shared semantic/visual embedding that en-
ables a more general language grounding ac-
quisition system. We evaluate the efficacy of
this learning by predicting the semantics of
ground truth objects and comparing the per-
formance with each of a predefined category
classifier and a simple logistic regression clas-
sifier. Our preliminary results suggest that this
generative approach exhibits promising results
in language grounding without pre-specifying
visual categories such as color and shape.

1 Introduction

.Grounded language acquisition, in which linguis-
tic constructs are paired with visual constructs to
learn the perceived world, has been of notable
interest in the rapidly growing field of robotics.
Joint modeling of language and vision (Matuszek
et al., 2012; Pillai and Matuszek, 2018), where
natural language is paired with sensor information
to train visual classifiers, allows learning when
both the language space and the perceptual space
are novel—that is, such systems are able to learn
novel words describing objects, attributes, or ac-
tions that are not preexisting in the formal repre-
sentation language.

While this method learns language groundings
from visual features for multiple attribute classes,
in most work in this area, classifiers are still
trained for specific domains, such as object type
or color. However, modeling semantics specific to
particular attribute types still constrains language
acquisition. Words denote visual classifiers, which
are then trained with visual features extracted for
a fixed set of semantic categories. The approach

is limited to learning a predefined visual category
such as color, shape, and object words.

In this work, we present general visual classi-
fiers that learn the language without relying on
predefined visual categories. Our method gener-
alizes language acquisition by using novel, gen-
erally applicable visual percepts from natural de-
scriptions of real-world objects. Instead of creat-
ing classifiers for every high-level category, such
as color, shape and object, we use a combina-
tion of features in order to create a general clas-
sifier for terms that we observe in language used
to describe real-world objects. We use deep gen-
erative models to obtain a representative unified
visual embedding from the combination of visual
features to move away from category-specific lan-
guage learning constraints (see fig. 1).

Our primary contribution is a proposition
to generalize language acquisition by moving
away from predefined categories to category-
free grounded language acquisition. In order to
compare to existing work, we evaluate against
attribute-specific color, shape, and object words;
however, in contrast to most existing work, the
system we present does not rely on these as exist-
ing categories. We compare against systems with
and without predefined categories.

A high-level view of our approach can be for-
mulated as follows: 1) Join all observed visual
features. 2) Use the latent feature discrimination
method (Kingma et al., 2014) based on an un-
supervised neural variational autoencoder to ex-
tract meaningful, representative latent embedding
from the cumulative feature set. 3) Learn a gen-
eral visual classifier using the latent embedding
created from the cumulative feature set (See figure
1). These approaches are trained and tested on an
RGB-D image dataset (Pillai and Matuszek, 2018)
created using a Kinect2 sensor and crowdsourced



Figure 1: Design diagram of the unified discriminative method. For every object, all kinds of features are extracted
and learn it through a latent feature generative model to generate a representative embedding of the feature vector.
The extracted embedding is joined with a visual classifier denoted by the “language term.”

descriptions of the images obtained from Me-
chanical Turk. Initial experiments show promis-
ing results on generalizing language grounding
for terms. Our unsupervised neural variational au-
toencoder approach provides a matching result
compared to the predefined category classifier.
This suggests that this work has promise in learn-
ing more generalized language groundings.

2 Related Work

Notable research exists in the field of grounded
language acquisition (Harnad, 1990) where lin-
guistic constricts are acquired through interact-
ing with the perceptual world. Popular language-
vision grounding applications include generating
descriptions from images or videos (Vinyals et al.,
2015), grounding commands, directions, or action
words (Artzi and Zettlemoyer, 2013; Anderson
et al., 2018; Misra et al., 2016; Al-Omari et al.,
2017; Chai et al., 2018), and visual question an-
swering (VQA) (Antol et al., 2015; Yang et al.,
2016; Selvaraju et al., 2017).

Our research is based on Pillai and Matuszek
(2018), in which language is learned by jointly
connecting with visual characteristics of real
world objects. We learn visual attributes (Nyga
et al., 2017) from a small dataset which is simi-

lar to one-shot learning (Hariharan and Girshick,
2017; Tommasi et al., 2010; Vinyals et al., 2016),
which learns from a few samples, and zero-shot
learning (Lampert et al., 2014; Elhoseiny et al.,
2013) which learns from no samples.

Our experiments are designed to learn color,
shape, and object attributes (Berg et al., 2010)
from the descriptions of real-world objects with-
out specifying the category of the attributes,
whereas Paul et al. (2016); Tellex et al. (2011)
propose to ground spatial concepts, Brawer et al.
(2018) learn speech joining with context, and Yu
et al. (2016, 2017) grounds natural language refer-
ring expressions for objects in images. Learning
visual attributes such as color and shape is critical
in robot object grasping (Rao et al., 2018; Levine
et al., 2018) and manipulation tasks. There are
studies that ground language by partitioning fea-
ture space by context (Thomason et al.), whereas
we intend to learn words moving beyond the at-
tribute types without manually separating them.

Deep learning has been successfully applied
to image classification (Krizhevsky et al., 2012),
object detection (Hatori et al., 2018; Ren et al.,
2015), video classification (Karpathy et al., 2014),
image to image translation (Isola et al., 2017),
linking motion with language (Plappert et al.,
2018) and integrating appearance, motion, gaze,



and spatial-temporal context (Balajee Vasudevan
et al., 2018). However, this requires a large dataset
for processing. Our objective is to gain higher pre-
diction with a small, but complex dataset.

Our architecture predicts visual percepts associ-
ated with the language by training the representa-
tive latent probability distribution generated from
cumulative visual features using a deep generative
model. We use a one hidden layer deep genera-
tive variational autoencoder model to generate la-
tent embedding from our visual features. Autoen-
coding has been applied to a number of tasks, in-
cluding image to image translations (Wang et al.,
2018), sign language translation (Cihan Camgoz
et al., 2018), 3d shape analysis (Tan et al., 2018),
hand pose estimation (Wan et al., 2017), sentence
annotations (Ahn et al., 2018), denoising (Mao
et al., 2016), and scene understanding (Cadena
et al., 2016).

Silberer and Lapata (2014) learns a stacked au-
toencoder that grounds semantic representation of
words by mapping language and vision into an
embedding space. Although our objective is sim-
ilar to theirs, they train stacked autoencoders for
every modality by treating them separately and
fusing them at the last layer to obtain meaning-
ful representation, whereas we combine all avail-
able raw visual features before feeding them into
a deep network with no differentiation among the
attribute types. Rohrbach et al. (2016) employs a
deep network with Long Short-Term Memory net-
work (LSTM) to ground textual phrases in images
with no, a few, or all grounding annotations avail-
able, but in this work, we intend to ground the
semantics of the words without specifying its at-
tribute type, using the annotations from natural de-
scriptions from Amazon Mechanical Turk users.

3 Background on Latent Feature
Discriminative Model

Our research uses a deep generative
model (Kingma et al., 2014) of variational
autoencoder to generate latent embedding for
training visual classifiers. A variational autoen-
coder consists of an encoder, a decoder, and a
loss function. The encoder is a neural network
which translates input data X into latent (hidden)
variables Z. We can view it as P (Z|X). We
use a variational distribution qθ(z) to approxi-
mate P (Z|X). And this qθ(Z) is viewed as the
encoder. The decoder is also a neural network

Figure 2: Sample RGB images in the dataset, as taken
with a Kinect2 camera and shown to annotators (Pillai
and Matuszek, 2018). In this visually varied dataset,
shape and object classification are nontrivial.

which attempts to reconstruct X from the latent
variables Z. We model it as Pφ(X|Z) where φ
are the weight parameters in decoder.

Here our objective is to learn useful and mean-
ingful latent representations (Z), from the input
data (inference network/encoder network) to uti-
lize it in our classification. We approximate the
posterior probability using a Gaussian function
qθ(z|x), given by:

qθ(z|x) = N (z|µθ(x), diag(σ2θ(x))

Where σ2(x) is a vector of standard deviations,
µ(x) is a vector of means, and µ(x) and σ2(x) is
represented as multilayer perceptrons (MLPs).

The efficiency of the latent representation is en-
hanced using the loss function, L which is calcu-
lated as the sum of reconstruction error (expec-
tation of negative log-likelihood) and the KL di-
vergence of approximation function and prior dis-
tribution (KL(q(z|x)||p(z)). We can reduce the
loss by minimizing the KL divergence. The over-
all loss function is then:

L = −E[log p(x|z)] + KL(q(z|x)||p(z))

4 Approach

This work is similar to approaches in which lan-
guage grounding is treated as an association of
language tokens (words) with the visual percepts
extracted from real world objects. In previous
work Pillai and Matuszek (2018), we obtained de-
scriptions of objects, tokenized them, created one
visual classifier per category of attribute, and used
them to learn real world objects. The ‘correct’ at-
tribute type was assumed to be the classifier with



the best fit to the training data. Here, instead of
building classifiers within specific categories, we
create and learn a single visual classifier per term
from a single general set of features (e.g., instead
of learning separate possible classifiers such as
both “cube-as-shape” and “cube-as-object” clas-
sifiers, we learn a single “cube” classifier).

This involves three steps: First, concatenate all
the visual features as a single vector. Second, gen-
erate representative and meaningful embeddings
from these cumulative feature vectors using a la-
tent discriminative variational autoencoder. Last,
learn one visual classifier per token, associating
visual embeddings generated using the learned
weights of variational autoencoder (see section
4.2 for details).

4.1 Data Corpus

We use a dataset of images and descriptions that
contains color and depth images of real-world
objects in 72 categories, divided into 18 classes
(figure 2). Objects include food objects such as
‘potato,’ ‘tomato,’ and ‘corn’ and childrens toys
in several shapes such as ‘cube’ and ‘triangle’.
There are an average of 4.5 images collected for
every object. The language dataset includes 6000
descriptions (see figure 3) collected from Amazon
Mechanical Turk ( 85 descriptions per object).

We use a unigram language model in learning
visual classifiers. Visual classifiers are associated
with unique words extracted from descriptions.
These words are produced by tokenizing the de-
scriptions, filtering stopwords, applying stemming
and lemmatization processes, and filtering for do-
main relevance using tf-idf. For example, for a
tomato instance, the description could be “This is
an image of red tomato,” giving “image,” “red”
and “tomato” as focal tokens.

A binary classifier is then trained for each of
these terms, In which words used in the descrip-
tions form (positive) binary labels. Tf-idf is used
to extract meaningful tokens from this set. Em-
pirically, this helps identify domain-meaningful
words for which to learn classifiers. Using this
metric, the score of a word decreases with the
number of documents it appears in, and increases
with the number of times it appears in a document.
Terms such as “image,” “picture,” and “object” ap-
pear in an overwhelming number of documents,
but relevant terms such as “carrot” or “banana”
appear disproportionately in fewer documents.

Figure 3: Object samples and language descriptions
collected from Amazon Mechanical Turk annotators.
The typographical errors are part of the noisy descrip-
tions obtained from Mechanical Turk.

In order to train classifiers, two categories of
visual features are used: COLOR (averaged RGB
values extracted from the color image of the ob-
ject) and SHAPE (kernel descriptors) (Bo et al.,
2011), extracted from color and depth images
respectively. Kernel descriptors model size, 3D
shape, and depth edge from the RGB-D depth
channel, and are efficient in shape and object clas-
sification.

4.2 Unified Discriminative Learning Method

Our objective is to associate the observed natu-
ral language W with the set of real-world objects,
O. To learn this grounded association, we create
a generalized visual feature embedding out of the
features extracted from the object instances and
use it to learn a general classifier. Components
of the unified discriminative model are explained
as follows. Language refers to the Amazon Me-
chanical Turk description used for the object in
the figure. The visual groundings section explains
the concatenation of visual features and extrac-
tion of latent embedding using latent discrimina-
tive model. Finally, the category-free visual clas-
sifier describes the association between language
and visual characteristics. These components are
shown in Figure 4.

Language. We use a unigram language model that
defines P (W |S), which tokenizes and filters the
sentences S into words W . We learn the mean-
ingful and relevant words, w ∈ W , using the tf-
idf statistical measure described above. Tf-idf is
a well-known metric to measure how relevant a
word is in a particular document (in this case writ-
ten description).



Figure 4: Diagram of approaches. The predefined category classifier—a current approach in the literature—learns
one visual classifier for every visual category, accepting input from the respective visual characteristics (blue box).
Category-free logistic regression is a baseline that learns a single classifier for each word, accepting cumulative
visual features as input (green box). On the far right (yellow box), the Unified Discriminative Method—described
in this paper—generates visual classifiers for each word, accepting latent visual embedding generated from cumu-
lative visual features as input.

Category-free Visual Classifiers. Given a
learned embedding Z for word w, we learn a
binary classifier Pc(y = 1|Z) for the positive
items and Pc(y = 0|Z) for the negative items (see
section 5). Z is defined as the visual groundings
generated from the cumulative features. In our
approach, instead of creating a “red-as-color”
classifier by training on color features, we create
a unified general classifier for the word “red” by
associating a generalized probability distribution
made from the visual features extracted from the
perceived objects.

Visual Groundings. As described above, we are
attempting to form a unified probability distribu-
tion, P (z|o) of latent variables (z) out of all fea-
ture variables and use it as the general embedding
needed to learn the visual classifier. We define the
cumulative feature input X as < f1, f2...fn >
where fi is a type of visual feature extracted from
the object, o. Here our color features are of dimen-
sion 3, and shape features are of dimension 700,
reflecting the comparative complexity of shape
and the simple colors of the objects in the datset.
In this research, our challenge is to find an effi-
cient representation of our feature space P (Z|X)
for our grounded learning tasks.

We employ latent feature discriminative vari-
ational autoencoder (Kingma et al., 2014)
to construct a representative, meaningful low-
dimensional embedding, accepting the cumulative
feature vector X as input. Employing an encoder
function represented by a neural network (see sec-
tion 3), we learn the encoder weights of the uni-

fied discriminative model (UDM) by applying all
the training data as input (for more detail on the
architecture, see section 5).

The above-mentioned components explain the
main parts of our grounded language model. In
our framework, for every classifier c, we extract a
latent embedding which is the vision grounding Z
using the positive and negative object instance fea-
tures. Vectors of the mean µ(x) and the standard
deviation σ2(x) that are extracted from the gener-
ator network define the latent embedding, Z. We
used logistic regression on positive and negative
groundings to train the binary classifier language
learning model for every token.

5 Experimental Results

We use four-fold cross-validation for our experi-
ments. We have image dataX = {X1, X2....Xn},
where Xi is a cumulative vector constructed from
features of all categories. In this framework, it is
the concatenation of the shape and color features.

We selected positive object instances for every
meaningful token selected using tf-idf. We con-
sider an object instance a ‘positive’ example if
the object is described by that token in any de-
scription. If a token is observed for the first time,
we create a new visual classifier named after that
token; when new objects are observed with de-
scriptions that include this token, we update visual
classifiers with the new positive instance.

In order to find negative training examples,we
utilize semantic similarity measures over the de-
scriptions of (Pillai et al., 2018; Pillai and Ma-
tuszek, 2018). For this purpose, we treated a con-



catenation of all the descriptions associated with
one object as documents, and converted these ‘de-
scriptive documents’ into vector space using the
Distributed Memory Model of Paragraph Vectors
(PV-DM) (Mikolov et al., 2013a,b). As semanti-
cally similar documents will have similar repre-
sentation in vector space, we used cosine similar-
ity statistical metric to find the most distant para-
graph vectors, and selected the respective object
instances as negative examples for our token.

The latent feature discriminative method is a
variational autoencoder (see section 3) with a sin-
gle hidden layer neural network. We experimented
with several hidden layer units ranging from 100
to 600, and 500 performed the best. Rectified lin-
ear unit (ReLU) non-linear function is a good ap-
proximator and is applied as an activation function
between the layers. The output layer of the en-
coder provides the latent embedding for our clas-
sification. We experimented with latent embed-
ding lengths ranging from 12 to 100. We learned
the weights needed for extracting latent embed-
ding representation by applying all training data
to the latent feature variational autoencoder.

Language acquisition success is measured as
a funtion of the prediction performance of the
learned visual classifiers. Our unified discrimi-
native method is compared with two other ap-
proaches. First, in the ‘predefined’ category clas-
sifier, visual classifiers are trained for every token
and feature category, as per previous work: For ex-
ample, “arch” is trained as “arch-as-color,” “arch-
as-shape,” and “arch-as-object” classifiers.

In ‘category-free logistic regression,’ logistic
regression classifiers are trained for every token
with the concatenated feature set. Here, “arch” is
trained as “arch-classifier,” accepting a concate-
nated set of all features as its input (see figure 4
for the high-level design diagram).

Table 1: Overall summary of the F1-score distribution
comparisons plotted in Figure 5. The minimum, mean
and the maximum of our method (latent dimension
50) are higher than all other approaches. Our method
shows promising results in learning the language be-
yond category constraints.

Figure 5: The comparison of the F1-score distribution
of all tokens of the unified discriminative method vs.
baselines (leftmost two bars). Minimum, mean, and
maximum F1-score performance of UDM using 50 la-
tent dimensions is both high and consistent compared
to both baselines and other latent dimension variants.

In addition to the comparison with two base-
lines, we conducted experiments with varying
lengths of latent dimensions to ensure the best
quality prediction. We experimented unified dis-
criminative method with latent dimensions 12, 50,
and 100 to analyze the performance variation in
grounded language prediction.

For all analyses, we used 72 objects and 6000
descriptions. Four-fold cross-validation is applied
to the all methods. We used the image and lan-
guage dataset for evaluating all the methods and
trained visual classifiers on “color,” “shape,” and
“object” words. For every learned classifier, we
selected 3–4 positive and 4–6 negative images
from the test set; this number varied with seman-
tic distance. If the predicted probability for a test
image is above 0.5 it is considered a positive re-
sult. We calculated averaged F1-score conducting
10 experiments for every word.

Language Prediction Probabilities. Table 2
shows the association between visual classifiers
and the ground truth after learning the lan-
guage and vision components through our uni-
fied discriminative method. Color classifiers show
promising results. The “yellow” classifier is able
to predict “yellow” ground truths successfully, as
well as “lemon.” In our dataset, the variation of



Table 2: Prediction probabilities of selected visual clas-
sifiers (x-axis) against ground truth objects (y-axis) se-
lected from a held-out test set. This confusion matrix
exhibits the prediction confidence of the unified dis-
criminative method (UDM) run against real-world ob-
jects. Color, shape, and object variations add complex-
ities to the performance.

“yellow” objects ranged from bananas to corn,
while “purple” objects were limited to eggplant,
plum, and cabbage (a wider color range, since
eggplants are frequently nearly black).

Compared to color classifiers, object classifiers
are able to predict object instances with great
prediction strength. The “lemon” classifier shows
the positive association with ‘yellow objects, and
strong predictive ability on a lemon. The shape
features of a carrot are complex compared to a
lemon, so it is unsurprising that the predictive
power of the learned “carrot” classifier is not
strong compared to a “lemon” classifier. From dif-
ferent angles, pictures of carrots show very differ-
ent shapes, while lemons are almost the same from
all angles. The complexity of the features affects
the classification accuracy substantially.

Performance comparison for specific words.
Table 3 shows the performance comparison of two
baselines and the variants of the unified discrimi-
native method for every meaningful token selected
using tf-idf. As mentioned above, there were 4 tri-
als for every method, and every token is tested 10
times in each trial with 3-6 positive and negative
test instances. For every token, F1-score is cal-
culated in every test and is averaged to calculate
the overall measure treating every token test result
equally.

The predefined category-specific baseline
grounds color specific language “terms” ex-
ceptionally well compared to other approaches.
On average, color classifiers had an F1-score
of 0.792 for the predefined category classifier,
0.578 for category-free logistic regression, 0.51
for the unified discriminative method with la-

Table 3: Averaged macro F1-score comparison of our
unified discriminative method against other approaches
for every token. We segment the classifiers by category
here for ease of analysis: our UDM models do not con-
sider category types. UDM with latent dimension 50
is able to provide promising performance in grounded
language acquisition for all categories. Color-specific
visual classifiers perform better compared to the cate-
gory free logistic regression baseline. Object and shape
classifiers perform well with our method (UDM) with
latent dimension 50 compared to other approaches.

tent dimension 12, 0.611 for UDM with latent
dimension 50, and 0.511 for UDM with latent
dimension 100. However, our method with latent
dimension 50 is able to perform better than the
category-free logistic regression where classifier
input is accepted as a vector of raw features.

Our method with latent dimension 50 outper-
forms both baselines for shape classification, with
an average F1-score of 0.69, where category-free
logistic regression scored 0.52, UDM with latent
dimension 12 scored 0.64, UDM with latent di-
mension 100 scored 0.57, and category-specific
approach scored 0.61.

In the case of object classification, which is
comparatively complex, our method with latent
dimensions 12 and 50 perform better compared
to predefined category classifier and category-free
logistic regression. Scores of the methods are as
follows: Predefined category classifier: 0.6744,
category-free logistic regression: 0.6163, UDM



with latent dimension 12: 0.7154, UDM with la-
tent dimension with 50: 0.7537, and with latent
dimension 100: 0.6865. When the minimum F1-
score for UDM with dimension 50 is 0.626, the
baseline predefined category classifier scores as
low as 0.246 and category free logistic regression
scores 0.233.

Figure 6: Averaged micro F1-score performance of
visual classifiers. The unified discriminative method
(UDM) shows improved performance than predefined
category classifier where classifiers are learned per cat-
egory and the category-free logistic regression where
the concatenated feature set is learned per word.

Comparison of macro F1-score distributions
for all tokens. The plot 5 shows the distributional
comparison of other approaches with discrimina-
tive model variants. Table 1 shows the overall
summary of these distribution comparisons, while
the boxplot visualizes the median (middle line in
the box), two hinges, two whiskers, and all out-
liers. The lower and upper hinges outline the 25th

and 75th percentiles of the data distribution. All
scores are higher than baselines, with a minimum
F1-score performance is 0.4560 for our method
with dimension 50.

Overall micro averaged F1-score comparisons.
The plot 6 indicates the micro-averaged F1-score
of performance comparison of our method with all
other approaches. Our method scores 0.72 which
is high compared to all other performances. This
indicates that extracting meaningful embedding
from existing features is an efficient method to
carry out grounded language prediction.

6 Conclusion

An unconstrained general classifier is essential
for learning language in association with the fea-
tures extracted from objects. In this work, we
present an approach for learning a category-free
unified language grounding model. Our results in-
dicate that learning meaningful embedding from
the cumulative unified feature set is a great ap-
proach for learning linguistic constructs beyond
constrained domains. We demonstrate that such a
unified model, when using carefully chosen pa-
rameters, can efficiently ground linguistic con-
cepts with unconstrained natural language using
sensor data. This reduces the need to learn classi-
fiers with specific category features.

Analysis with our unified discriminative
method, which extracts the relevant represen-
tation of feature sets, suggests that the method
is effective. The efficient use of such a learning
system can potentially reduce the need for se-
lecting important tokens from a large corpora. In
the future, we intend to run the approach with a
more varied and complex dataset. We also intend
to compare our results with deep net classifier
with no auto-encoder layers. In addition, we plan
to compare our models with pre-trained word
and resnet models. We also aim to spot semantic
similarity in words using word vectors without
visual data.
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